Difference between revisions of "Complexity Zoo"

From Complexity Zoo
Jump to navigation Jump to search
m (Update count to 546, after adding QPIP)
m (an alternative of iOS viewer)
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
==Introduction==
 
==Introduction==
  
Welcome to the '''Complexity Zoo'''... There are now 546 classes and counting!
+
Welcome to the '''Complexity Zoo'''... There are now 547 classes and counting!
 
[[Image:zoo.gif|thumb|right|200px|what's your problem?]]
 
[[Image:zoo.gif|thumb|right|200px|what's your problem?]]
  
Line 31: Line 31:
 
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions.
 
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions.
 
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams.
 
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams.
* [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo.
+
* [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo. [https://satoshihada.github.io/complexity-zoo/ An alternative].
  
 
''Appendices''
 
''Appendices''
Line 59: Line 59:
 
{{CZ-Letter-Section|H}}
 
{{CZ-Letter-Section|H}}
 
{{CZ-Letter-Section|I}}
 
{{CZ-Letter-Section|I}}
<!--{{CZ-Letter-Section|J}}
+
<!--{{CZ-Letter-Section|J}}-->
{{CZ-Letter-Section|K}}-->
+
{{CZ-Letter-Section|K}}
 
{{CZ-Letter-Section|L}}
 
{{CZ-Letter-Section|L}}
 
{{CZ-Letter-Section|M}}
 
{{CZ-Letter-Section|M}}

Latest revision as of 05:21, 19 September 2024


Introduction

Welcome to the Complexity Zoo... There are now 547 classes and counting!

what's your problem?

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Zookeeper
Scott Aaronson
Veterinarian
Greg Kuperberg
Zoo Conservationist
Oliver Habryka on behalf of the LessWrong community

The Zoo first opened in 2002. It was made into a wiki in 2005, and hosted at the University of Waterloo from 2012 to 2020.

Errors? Omissions? Misattributions? Your favorite class not here? Then please contribute to the zoo as you see fit by signing up and clicking on the edit links. Please include references, or better yet links to papers if available.

To create a new class, click on the edit link of the class before or after the one that you want to add and copy the format of that class. (The classes are alphabetized by their tag names.) Then add the class to the table of contents and increment the total number of classes. After this, you can use the side edit links to edit the individual sections. For more on using the wiki language, see the Mediawiki Help page.

If you would like to contribute but feel unable to make the updates yourself, email the zookeeper at scott at scottaaronson.com.

See Also

Introductory Resources

  • Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
  • Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)

Other Collections and Resources

Appendices

NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.


All Classes

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Symbols

0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1

A

A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP

B

βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP

C

C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK

D

D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0

E

E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE

F

FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))

G

GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]

H

HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK

I

IC[log,poly] - IP - IOP - IPP - IP[polylog]

K

K

L

L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP

M

MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0

N

NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))

O

OIP - OMA - ONP - OptP - O2P

P

P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PZK

Q

Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA(2) - QMA1 - QMAlog - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK

R

R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))

S

S - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - SUBEXP - symP - SZK - SZKh

T

TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR

U

UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc

V

VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk

W

W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]

X

XOR-MIP*[2,1] - XL - XNL - XP - XPuniform

Y

YACC - YP - YPP - YQP

Z

ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP