Difference between revisions of "Complexity Zoo"

From Complexity Zoo
Jump to navigation Jump to search
(Replaced content with "[nhà cái QQ88](https://qq88.fun/) khẳng định vị thế hàng đầu trong lĩnh vực cá cược trực tuyến tại châu Á bằng việc cung cấp sản ph...")
Tag: Replaced
(new88)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[nhà cái QQ88](https://qq88.fun/) khẳng định vị thế hàng đầu trong lĩnh vực cá cược trực tuyến tại châu Á bằng việc cung cấp sản phẩm đa dạng, khuyến mãi hấp dẫn và dịch vụ khách hàng chuyên nghiệp. Với sứ mệnh mang đến sân chơi công bằng và thú vị, nhà cái này luôn là điểm đến tin cậy cho cộng đồng yêu thích giải trí trực tuyến.
+
__NOTOC__
 +
 
 +
[https://new88.solar/ link new88] dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.
 +
 
 +
==See Also==
 +
 
 +
''Introductory Resources''
 +
* [[Zoo Intro|Introductory Essay]]: New visitors may want to stop here and see what the Zoo is all about.
 +
* [[Petting Zoo]]: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)
 +
 
 +
''Other Collections and Resources''
 +
* [[Complexity Garden]]: Problems of interest in complexity theory and some notes about important inclusions.
 +
* [[Complexity Dojo]]: A collection of major theorems in complexity theory.
 +
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions.
 +
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams.
 +
* [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo. [https://satoshihada.github.io/complexity-zoo/ An alternative].
 +
 
 +
''Appendices''
 +
*[[Zoo Glossary|Glossary]]: Definitions of some complexity theoretic terms.
 +
*[[Zoo References|References]]: Bibliography for the Zoo.
 +
*[[Zoo Pronunciation|Pronunciation Guide]]: A resource for those who insist on communicating verbally about complexity.
 +
*[[Zoo Conventions|Conventions and Notation]]: Common notational conventions used here at the Zoo.
 +
*[[Zoo Operators|Operators]]: A (very short) list of operators which act upon classes.
 +
*[[Zoo Acknowledgments|Acknowledgments]]: Where the Zookeeper and friends acknowledge those who have helped out with the Zoo.
 +
*[[Meta:Complexity Zoo Contributor's Guide|Complexity Zoo Contributor's Guide]]: A guide on how to get started helping out with the Zoo.
 +
 
 +
''NB:'' Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram.  These references are obsolete until further notice.
 +
 
 +
<!-- Moved Most Important Classes to Petting Zoo -->
 +
 
 +
== All Classes ==
 +
{{CZ-Menu-Content}}
 +
 
 +
{{CZ-Letter-Section|Symbols}}
 +
{{CZ-Letter-Section|A}}
 +
{{CZ-Letter-Section|B}}
 +
{{CZ-Letter-Section|C}}
 +
{{CZ-Letter-Section|D}}
 +
{{CZ-Letter-Section|E}}
 +
{{CZ-Letter-Section|F}}
 +
{{CZ-Letter-Section|G}}
 +
{{CZ-Letter-Section|H}}
 +
{{CZ-Letter-Section|I}}
 +
<!--{{CZ-Letter-Section|J}}-->
 +
{{CZ-Letter-Section|K}}
 +
{{CZ-Letter-Section|L}}
 +
{{CZ-Letter-Section|M}}
 +
{{CZ-Letter-Section|N}}
 +
{{CZ-Letter-Section|O}}
 +
{{CZ-Letter-Section|P}}
 +
{{CZ-Letter-Section|Q}}
 +
{{CZ-Letter-Section|R}}
 +
{{CZ-Letter-Section|S}}
 +
{{CZ-Letter-Section|T}}
 +
{{CZ-Letter-Section|U}}
 +
{{CZ-Letter-Section|V}}
 +
{{CZ-Letter-Section|W}}
 +
{{CZ-Letter-Section|X}}
 +
{{CZ-Letter-Section|Y}}
 +
{{CZ-Letter-Section|Z}}
 +
 
 +
 
 +
{{CZ-Categories}}

Latest revision as of 04:41, 6 December 2025


link new88 dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.

See Also

Introductory Resources

  • Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
  • Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)

Other Collections and Resources

Appendices

NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.


All Classes

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Symbols

0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1

A

A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP

B

βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP

C

C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK

D

D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0

E

E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE

F

FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))

G

GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]

H

HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK

I

IC[log,poly] - IP - IOP - IPP - IP[polylog]

K

K

L

L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP

M

MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0

N

NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))

O

OIP - OMA - ONP - OptP - O2P

P

P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK

Q

Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK

R

R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))

S

S - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh

T

TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR

U

UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc

V

VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk

W

W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]

X

XOR-MIP*[2,1] - XL - XNL - XP - XPuniform

Y

YACC - YP - YPP - YQP

Z

ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP