Difference between revisions of "Complexity Zoo"

From Complexity Zoo
Jump to navigation Jump to search
(new88)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
  
==Introduction==
+
[https://new88.solar/ link new88] dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.
 
 
Welcome to the '''Complexity Zoo'''... There are now 551 classes and counting!
 
[[Image:zoo.gif|thumb|right|200px|what's your problem?]]
 
 
 
{{CZ-Menu-Content}}
 
 
 
; Zookeeper : [http://www.scottaaronson.com/ Scott Aaronson]
 
; Veterinarian : [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg]
 
; Zoo Conservationist : [https://www.linkedin.com/in/oliver-habryka-8a585297 Oliver Habryka] on behalf of the [https://www.lesswrong.com/ LessWrong] community
 
 
 
The Zoo first opened in 2002.  It was made into a wiki in 2005, and hosted at the University of Waterloo from 2012 to 2020.
 
 
 
Errors?  Omissions?  Misattributions?  Your favorite class not here?  Then please contribute to the zoo as you see fit by [[Special:UserLogin | signing up]] and clicking on the edit links.  Please include references, or better yet links to papers if available.
 
 
 
To create a new class, click on the edit link of the class before or after the one that you want to add and copy the format of that class.  (The classes are alphabetized by their tag names.)  Then add the class to the table of contents (e.g. for "A", go to page titled "Template:CZ-A") and increment the total number of classes (on this page).  You can add references to [[Complexity_Zoo_References|this page]]. After this, you can use the side edit links to edit the individual sections. For more on using the wiki language, see the  [https://www.mediawiki.org/wiki/Help:Contents Mediawiki Help page].
 
 
 
If you would like to contribute but feel unable to make the updates yourself, email the zookeeper at scott at scottaaronson.com.
 
  
 
==See Also==
 
==See Also==

Latest revision as of 04:41, 6 December 2025


link new88 dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.

See Also

Introductory Resources

  • Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
  • Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)

Other Collections and Resources

Appendices

NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.


All Classes

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Symbols

0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1

A

A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP

B

βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP

C

C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK

D

D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0

E

E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE

F

FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))

G

GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]

H

HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK

I

IC[log,poly] - IP - IOP - IPP - IP[polylog]

K

K

L

L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP

M

MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0

N

NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))

O

OIP - OMA - ONP - OptP - O2P

P

P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK

Q

Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK

R

R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))

S

S - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh

T

TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR

U

UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc

V

VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk

W

W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]

X

XOR-MIP*[2,1] - XL - XNL - XP - XPuniform

Y

YACC - YP - YPP - YQP

Z

ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP