Difference between revisions of "Complexity Zoo"
New88solar3 (talk | contribs) (new88) |
|||
| (4 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
| − | + | [https://new88.solar/ link new88] dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==See Also== | ==See Also== | ||
Latest revision as of 04:41, 6 December 2025
link new88 dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.
See Also
Introductory Resources
- Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
- Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)
Other Collections and Resources
- Complexity Garden: Problems of interest in complexity theory and some notes about important inclusions.
- Complexity Dojo: A collection of major theorems in complexity theory.
- Special Exhibit: A collection of classes of quantum states and probability distributions.
- Complexity Zoology: A computer-assisted survey maintained by the Greg Kuperberg, including active and static inclusion diagrams.
- Complexity Zoo for iPad (and iPhone): An iOS viewer for Complexity Zoo. An alternative.
Appendices
- Glossary: Definitions of some complexity theoretic terms.
- References: Bibliography for the Zoo.
- Pronunciation Guide: A resource for those who insist on communicating verbally about complexity.
- Conventions and Notation: Common notational conventions used here at the Zoo.
- Operators: A (very short) list of operators which act upon classes.
- Acknowledgments: Where the Zookeeper and friends acknowledge those who have helped out with the Zoo.
- Complexity Zoo Contributor's Guide: A guide on how to get started helping out with the Zoo.
NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.
All Classes
Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Lists of related classes: Communication Complexity - Hierarchies - Nonuniform
Symbols
0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1
A
A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP
B
βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP
C
C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK
D
D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0
E
E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE
F
FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))
G
GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]
H
HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK
I
IC[log,poly] - IP - IOP - IPP - IP[polylog]
K
L
L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP
M
MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0
N
NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))
O
P
P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL∞ - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK
Q
Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK
R
R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))
S
S≠ - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh
T
TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR
U
UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc
V
VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk
W
W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]
X
XOR-MIP*[2,1] - XL - XNL - XP - XPuniform
Y
Z
ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP