Difference between revisions of "Complexity Zoo"

From Complexity Zoo
Jump to navigation Jump to search
(new88)
 
(49 intermediate revisions by 36 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
  
==Introduction==
+
[https://new88.solar/ link new88] dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.
 
 
Welcome to the '''Complexity Zoo'''... There are now 495 classes and counting!
 
[[Image:zoo.gif|thumb|right|200px|what's your problem?]]
 
 
 
{{CZ-Menu-Content}}
 
 
 
This information was originally moved from http://www.complexityzoo.com/ in August 2005, and is currently under the watchful eyes of its original creators:
 
 
 
'''Zookeeper''': [http://www.scottaaronson.com/ Scott Aaronson]<br>
 
'''Co-Zookeeper''': Charles Fu]<br>
 
'''Veterinarian''': [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg]<br>
 
'''Tour Guide''': [https://sites.google.com/site/cgranade/ Christopher Granade]
 
 
 
Errors?  Omissions?  Misattributions?  Your favorite class not here?  Then please contribute to the zoo as you see fit by [[sign_up_instructions | signing up]] and clicking on the edit links.  Please include references, or better yet links to papers if available.
 
 
 
To create a new class, click on the edit link of the class before or after the one that you want to add and copy the format of that class.  (The classes are alphabetized by their tag names.)  Then add the class to the table of contents and increment the total number of classes.  After this, you can use the side edit links to edit the individual sections. For more on using the wiki language, see our [[Simple_wiki_help | simple wiki help page]].
 
 
 
If you would like to contribute but feel unable to make the updates yourself, email the zookeeper at scott at scottaaronson.com.
 
  
 
==See Also==
 
==See Also==
Line 26: Line 8:
 
* [[Zoo Intro|Introductory Essay]]: New visitors may want to stop here and see what the Zoo is all about.
 
* [[Zoo Intro|Introductory Essay]]: New visitors may want to stop here and see what the Zoo is all about.
 
* [[Petting Zoo]]: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)
 
* [[Petting Zoo]]: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)
 
  
 
''Other Collections and Resources''
 
''Other Collections and Resources''
 
* [[Complexity Garden]]: Problems of interest in complexity theory and some notes about important inclusions.
 
* [[Complexity Garden]]: Problems of interest in complexity theory and some notes about important inclusions.
 +
* [[Complexity Dojo]]: A collection of major theorems in complexity theory.
 
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions.
 
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions.
 
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams.
 
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams.
* [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo.
+
* [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo. [https://satoshihada.github.io/complexity-zoo/ An alternative].
 
 
  
 
''Appendices''
 
''Appendices''
Line 43: Line 24:
 
*[[Zoo Acknowledgments|Acknowledgments]]: Where the Zookeeper and friends acknowledge those who have helped out with the Zoo.
 
*[[Zoo Acknowledgments|Acknowledgments]]: Where the Zookeeper and friends acknowledge those who have helped out with the Zoo.
 
*[[Meta:Complexity Zoo Contributor's Guide|Complexity Zoo Contributor's Guide]]: A guide on how to get started helping out with the Zoo.
 
*[[Meta:Complexity Zoo Contributor's Guide|Complexity Zoo Contributor's Guide]]: A guide on how to get started helping out with the Zoo.
 
  
 
''NB:'' Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram.  These references are obsolete until further notice.
 
''NB:'' Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram.  These references are obsolete until further notice.
Line 62: Line 42:
 
{{CZ-Letter-Section|H}}
 
{{CZ-Letter-Section|H}}
 
{{CZ-Letter-Section|I}}
 
{{CZ-Letter-Section|I}}
<!--{{CZ-Letter-Section|J}}
+
<!--{{CZ-Letter-Section|J}}-->
{{CZ-Letter-Section|K}}-->
+
{{CZ-Letter-Section|K}}
 
{{CZ-Letter-Section|L}}
 
{{CZ-Letter-Section|L}}
 
{{CZ-Letter-Section|M}}
 
{{CZ-Letter-Section|M}}

Latest revision as of 04:41, 6 December 2025


link new88 dẫn đến trang web chính thức, đảm bảo truy cập an toàn và không gián đoạn. Các tính năng nổi bật, chương trình ưu đãi hấp dẫn luôn được cập nhật thường xuyên. Người chơi có thể đăng ký nhanh chóng chỉ trong vài phút.

See Also

Introductory Resources

  • Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
  • Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)

Other Collections and Resources

Appendices

NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.


All Classes

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Symbols

0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1

A

A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP

B

βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP

C

C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK

D

D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0

E

E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE

F

FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))

G

GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]

H

HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK

I

IC[log,poly] - IP - IOP - IPP - IP[polylog]

K

K

L

L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP

M

MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0

N

NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))

O

OIP - OMA - ONP - OptP - O2P

P

P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK

Q

Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK

R

R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))

S

S - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh

T

TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR

U

UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc

V

VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk

W

W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]

X

XOR-MIP*[2,1] - XL - XNL - XP - XPuniform

Y

YACC - YP - YPP - YQP

Z

ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP