Difference between revisions of "Complexity Zoo"
m (→Introduction) |
789wineucom2 (talk | contribs) |
||
| (33 intermediate revisions by 26 users not shown) | |||
| Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
| − | + | 789 win thu hút người chơi nhờ tỷ lệ cược cạnh tranh và nhiều chương trình khuyến mãi giá trị. Nền tảng được tối ưu cho cả máy tính lẫn di động, thuận tiện khi giải trí mọi lúc. Hệ thống thanh toán linh hoạt, xử lý nhanh chóng giúp giao dịch diễn ra trơn tru. Nội dung trò chơi được cập nhật đều đặn, mang lại cảm giác mới mẻ. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==See Also== | ==See Also== | ||
| Line 32: | Line 11: | ||
''Other Collections and Resources'' | ''Other Collections and Resources'' | ||
* [[Complexity Garden]]: Problems of interest in complexity theory and some notes about important inclusions. | * [[Complexity Garden]]: Problems of interest in complexity theory and some notes about important inclusions. | ||
| + | * [[Complexity Dojo]]: A collection of major theorems in complexity theory. | ||
* [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions. | * [[Zoo Exhibit|Special Exhibit]]: A collection of classes of quantum states and probability distributions. | ||
* [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams. | * [http://www.math.ucdavis.edu/~greg/zoology/intro.html Complexity Zoology]: A computer-assisted survey maintained by the [http://www.math.ucdavis.edu/~greg/ Greg Kuperberg], including [http://www.math.ucdavis.edu/~greg/zoology/diagram.xml active] and [http://www.math.ucdavis.edu/~greg/zoology/diagram.pdf static] inclusion diagrams. | ||
| − | * [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo. | + | * [http://satoshihada.wordpress.com/complexity-zoo-for-ipad/ Complexity Zoo for iPad (and iPhone)]: An iOS viewer for Complexity Zoo. [https://satoshihada.github.io/complexity-zoo/ An alternative]. |
''Appendices'' | ''Appendices'' | ||
| Line 62: | Line 42: | ||
{{CZ-Letter-Section|H}} | {{CZ-Letter-Section|H}} | ||
{{CZ-Letter-Section|I}} | {{CZ-Letter-Section|I}} | ||
| − | <!--{{CZ-Letter-Section|J}} | + | <!--{{CZ-Letter-Section|J}}--> |
| − | {{CZ-Letter-Section|K}} | + | {{CZ-Letter-Section|K}} |
{{CZ-Letter-Section|L}} | {{CZ-Letter-Section|L}} | ||
{{CZ-Letter-Section|M}} | {{CZ-Letter-Section|M}} | ||
Latest revision as of 16:26, 19 December 2025
789 win thu hút người chơi nhờ tỷ lệ cược cạnh tranh và nhiều chương trình khuyến mãi giá trị. Nền tảng được tối ưu cho cả máy tính lẫn di động, thuận tiện khi giải trí mọi lúc. Hệ thống thanh toán linh hoạt, xử lý nhanh chóng giúp giao dịch diễn ra trơn tru. Nội dung trò chơi được cập nhật đều đặn, mang lại cảm giác mới mẻ.
See Also
Introductory Resources
- Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
- Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)
Other Collections and Resources
- Complexity Garden: Problems of interest in complexity theory and some notes about important inclusions.
- Complexity Dojo: A collection of major theorems in complexity theory.
- Special Exhibit: A collection of classes of quantum states and probability distributions.
- Complexity Zoology: A computer-assisted survey maintained by the Greg Kuperberg, including active and static inclusion diagrams.
- Complexity Zoo for iPad (and iPhone): An iOS viewer for Complexity Zoo. An alternative.
Appendices
- Glossary: Definitions of some complexity theoretic terms.
- References: Bibliography for the Zoo.
- Pronunciation Guide: A resource for those who insist on communicating verbally about complexity.
- Conventions and Notation: Common notational conventions used here at the Zoo.
- Operators: A (very short) list of operators which act upon classes.
- Acknowledgments: Where the Zookeeper and friends acknowledge those who have helped out with the Zoo.
- Complexity Zoo Contributor's Guide: A guide on how to get started helping out with the Zoo.
NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.
All Classes
Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Lists of related classes: Communication Complexity - Hierarchies - Nonuniform
Symbols
0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1
A
A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP
B
βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP
C
C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK
D
D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0
E
E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE
F
FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))
G
GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]
H
HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK
I
IC[log,poly] - IP - IOP - IPP - IP[polylog]
K
L
L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP
M
MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0
N
NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))
O
P
P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL∞ - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK
Q
Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK
R
R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))
S
S≠ - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh
T
TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR
U
UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc
V
VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk
W
W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]
X
XOR-MIP*[2,1] - XL - XNL - XP - XPuniform
Y
Z
ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP