Difference between revisions of "Zoo Operators"
Jump to navigation
Jump to search
(Added the first few operators: co, exists, forall, and BP) |
|||
Line 35: | Line 35: | ||
* If <math>\mathcal{C}</math> is closed under majority reductions, then <math>BP \cdot \mathcal{C}</math> admits probability amplification, so we get <math>BP \cdot BP \cdot \mathcal{C} = BP \cdot \mathcal{C}</math>, and we can replace the probability of 3/4 with <math>1/2+\varepsilon</math> for any constant (i.e., independent of the input size |x|) <math>\varepsilon > 0</math>, as well as with <math>1-2^{poly(n)}</math>. | * If <math>\mathcal{C}</math> is closed under majority reductions, then <math>BP \cdot \mathcal{C}</math> admits probability amplification, so we get <math>BP \cdot BP \cdot \mathcal{C} = BP \cdot \mathcal{C}</math>, and we can replace the probability of 3/4 with <math>1/2+\varepsilon</math> for any constant (i.e., independent of the input size |x|) <math>\varepsilon > 0</math>, as well as with <math>1-2^{poly(n)}</math>. | ||
* If <math>\mathcal{C}</math> is closed under majority reductions, then <math>BP \cdot \mathcal{C} \subseteq \exists \cdot \forall \cdot \mathcal{C} \cap \forall \cdot \exists \cdot \mathcal{C}</math>. | * If <math>\mathcal{C}</math> is closed under majority reductions, then <math>BP \cdot \mathcal{C} \subseteq \exists \cdot \forall \cdot \mathcal{C} \cap \forall \cdot \exists \cdot \mathcal{C}</math>. | ||
+ | * If <math>\mathcal{C}</math> is closed under majority reductions, then <math>\exists \cdot BP \cdot \mathcal{C} \subseteq BP \cdot \exists \cdot \mathcal{C}</math>. | ||
+ | * Note that, because of the semantic nature of the defining condition for the BP operator, it is possible that some languages <math>V \in \mathcal{C}</math> do not define a language <math>L \in BP \cdot \mathcal{C}</math> using the defining formula above. Only those V which satisfy the required condition can be used. | ||
Prominent examples: | Prominent examples: |
Revision as of 22:45, 12 November 2023
co: Complements
Definition: A language L is in if is in .
Properties:
Prominent examples: .
: Existential (polynomial)
Definition: A language L is in if there exists a polynomial p and a language such that, for all strings , is in L if and only if there exists a string y, of length such that .
Properties:
- and vice versa.
Prominent examples: P = NP.
: Universal (polynomial)
Definition: A language L is in if there exists a polynomial p and a language such that, for all strings , is in L if and only if for all strings y of length such that .
Properties:
- and vice versa.
Prominent examples: P = coNP
BP: Bounded-error probability (two-sided)
Definition: A language L is in if there exists a polynomial p and a language such that, for all strings , .
Properties:
- If is closed under majority reductions, then admits probability amplification, so we get , and we can replace the probability of 3/4 with for any constant (i.e., independent of the input size |x|) , as well as with .
- If is closed under majority reductions, then .
- If is closed under majority reductions, then .
- Note that, because of the semantic nature of the defining condition for the BP operator, it is possible that some languages do not define a language using the defining formula above. Only those V which satisfy the required condition can be used.
Prominent examples:
- P = BPP.
- (not to be confused with BPP!)