Complexity Zoo

From Complexity Zoo
Revision as of 16:26, 19 December 2025 by 789wineucom2 (talk | contribs) (→‎Introduction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


789 win thu hút người chơi nhờ tỷ lệ cược cạnh tranh và nhiều chương trình khuyến mãi giá trị. Nền tảng được tối ưu cho cả máy tính lẫn di động, thuận tiện khi giải trí mọi lúc. Hệ thống thanh toán linh hoạt, xử lý nhanh chóng giúp giao dịch diễn ra trơn tru. Nội dung trò chơi được cập nhật đều đặn, mang lại cảm giác mới mẻ.

See Also

Introductory Resources

  • Introductory Essay: New visitors may want to stop here and see what the Zoo is all about.
  • Petting Zoo: A more gentle version of the Zoo with fewer classes, meant for new initiates in complexity. (If you're looking for where the Most Important Classes went, look in the Petting Zoo.)

Other Collections and Resources

Appendices

NB: Longtime Zoo watchers may recall Chris Bourke's LaTeX version of the Zoo and Chad Brewbaker's graphical inclusion diagram. These references are obsolete until further notice.


All Classes

Complexity classes by letter: Symbols - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Lists of related classes: Communication Complexity - Hierarchies - Nonuniform

Symbols

0-1-NPC - 1NAuxPDAp - 2-EXP - 3SUM-hard - #AC0 - #L - #L/poly - #GA - #P - #W[t] - ⊕EXP - ⊕L - ⊕L/poly - ⊕P - ⊕Pcc - ⊕SAC0 - ⊕SAC1

A

A0PP - AC - AC0 - AC0[m] - AC1 - ACC0 - Ack - AH - AL - ALL - ALOGTIME - AlgP/poly - Almost-NP - Almost-P - Almost-PSPACE - AM - AMcc - AMEXP - AM ∩ coAM - AM[polylog] - AmpMP - AmpP-BQP - AP - APP - APSPACE - APX - ASPACE - ATIME - AUC-SPACE(f(n)) - AuxPDA - AVBPP - AvgE - AvgP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - AxP - AxPP

B

βP - BC=P - BH - BPd(P) - BPE - BPEE - BPHSPACE(f(n)) - BPL - BP•L - BP•NP - BPP - BPPcc - BPPcc - BPPKT - BPP/log - BPP/mlog - BPP//log - BPP/rlog - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP - BQP/log - BQP/poly - BQP/mlog - BQP/mpoly - BQP/qlog - BQP/qpoly - BQP-OBDD - BQPSPACE - BQPCTC - BQPtt/poly - BQTIME(f(n)) - k-BWBP

C

C=AC0 - C=L - C=P - CC - CC0 - CFL - CH - Check - CkP - CL - CL#P - CLOG - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP - coNE - coNEXP - coNL - coNP - coNPC - coNPcc - coNP/poly - coNQP - coRE - coRNC - coRP - coSL - coSPARSE - coUCC - coUP - CP - cq-Σ2 - CSIZE(f(n)) - CSL - CSP - CSPACE - CZK

D

D#P - DCFL - Δ2P - δ-BPP - δ-RP - DET - DiffAC0 - DisNP - DistNP - DP - DQC1 - DQP - DSPACE(f(n)) - DTIME(f(n)) - DTISP(t(n),s(n)) - Dyn-FO - Dyn-ThC0

E

E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EP - EPTAS - k-EQBP - EQP - EQPK - EQTIME(f(n)) - ESPACE - ∃BPP - ∃NISZK - ∃R - EXP - EXP/poly - EXPSPACE

F

FBQP - FERT - FPERT - Few - FewEXP - FewP - FH - FIXP - FNL - FNL/poly - FNP - FO - FO(DTC) - FO(LFP) - FO(PFP) - FO(TC) - FO() - FOLL - FP - FPNP[log] - FPL - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n))

G

GA - GAN-SPACE(f(n)) - GapAC0 - GapL - GapP - GC(s(n),C) - GCSL - GI - GLO - GPCD(r(n),q(n)) - G[t]

H

HalfP - HeurBPP - HeurBPTIME(f(n)) - HeurDTIME(f(n)) - HeurP - HeurPP - HeurNTIME(f(n)) - HkP - HVSZK

I

IC[log,poly] - IP - IOP - IPP - IP[polylog]

K

K

L

L - LC0 - LH - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGLOG - LOGNP - LOGSNP - L/poly - LWPP

M

MA - MAcc - MA' - MAC0 - MAE - MAEXP - mAL - MAPOLYLOG - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIP* - MIPns - MIPEXP - (Mk)P - mL - MM - MMSNP - mNC1 - mNL - mNP - ModkL - ModL - ModkP - ModP - ModPH - ModZkL - mP - MP - MPC - mP/poly - mTC0

N

NAuxPDAp - NC - NC0 - NC1 - NC2 - NE - NE/poly - Nearly-P - NEE - NEEE - NEEXP - NEXP - NEXP/poly - NIPZK - NIQSZK - NISZK - NISZKh - NL - NL/poly - NLIN - NLO - NLOG - NMCL - NONE - NNC(f(n)) - NP - NPC - NPC - NPcc - NPcc - NPI - NP ∩ coNP - (NP ∩ coNP)/poly - NP/log - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQL - NQL - NQP - NSPACE(f(n)) - NT - NT* - NTIME(f(n))

O

OIP - OMA - ONP - OptP - O2P

P

P - P/log - P/poly - P#P - P#P[1] - PCTC - PAC0 - PBP - k-PBP - PC - Pcc - Pcc - PCD(r(n),q(n)) - P-Close - PCP(r(n),q(n)) - PDQP - PermUP - PEXP - PF - PFCHK(t(n)) - PH - PHcc - Φ2P - PhP - Π2P - PINC - PIO - PK - PKC - PL - PL1 - PL - PLF - PLL - P-LOCAL - P-RLOCAL - PLS - PNP - PNPcc - P||NP - PNP[k] - PNP[log] - PNP[log^2] - P-OBDD - PODN - polyL - PostBPP - PostBPPcc - PostBQP - PP - PPcc - PP/poly - PPA - PPAD - PPADS - PPP - PPP - PPSPACE - PQMA[log] - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PromiseUP - PrSPACE(f(n)) - P-Sel - PSK - PSPACE - PSPACEcc - PSPACE/poly - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PureSuperQMA - PZK

Q

Q - QAC0 - QAC0[m] - QACC0 - QACf0 - QAM - QCFL - QCMA - QCPH - QEPH - QH - QIP - QIP[2] - QL - QMA - QMA-plus - QMA+ - QMA(2) - QMA1 - QMAlog - QMA+(2) - QMAM - QMA/qpoly - QMIP - QMIPle - QMIPne - QNC - QNC0 - QNC0/qpoly - QNC0/🐱 - QNCf0 - QNC1 - QP - QPH - QPLIN - QPSPACE - qq-QAM - QRG - QRG(k) - QRG(2) - QRG(1) - QRL - QSZK

R

R - RBQP - RE - REG - RevSPACE(f(n)) - RG - RG[1] - RHL - RHSPACE(f(n)) - RL - RNC - RNC1 - RP - RPcc - RPcc - RPP - RQP - RSPACE(f(n))

S

S - S2P - S2E - S2-EXP•PNP - SAC - SAC0 - SAC1 - SAPTIME - SBP - SBPcc - SBQP - SC - SE - SEH - SelfNP - SFk - Σ2P - SIZE(f(n)) - SKC - SL - SLICEWISE PSPACE - SNP - SO - SO(Horn) - SO(Krom) - SO(LFP) - SO(TC) - SO[] - SP - span-L - span-P - SPARSE - SPL - SPP - SQG - StoqMA - SUBEXP - symP - SZK - SZKh

T

TALLY - TC - TC0 - TC0(FOLL) - TC1 - TFNP - Θ2P - TI - TOWER - TreeBQP - TREE-REGULAR

U

UAMcc - UAP - UCC - UCFL - UE - UL - UL/poly - UP - UPcc - UPostBPPcc - UPPcc - US - USBPcc - UWAPPcc

V

VCk - VCOR - VNCk - VNPk - VPk - VPL - VQPk

W

W[1] - WAPP - WAPPcc - WHILE - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t]

X

XOR-MIP*[2,1] - XL - XNL - XP - XPuniform

Y

YACC - YP - YPP - YQP

Z

ZAMcc - ZBQP - ZK - ZPE - ZP•L - ZPP - ZPPcc - ZPTIME(f(n)) - ZQP